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A discussion is given of several methods used in generalizing the Bardeen-Cooper-Schrieffer theory of 
superconductivity to problems where position-dependence plays a key role. It is pointed out that the method 
in most common use (that of Gorkov) is inappropriate for discussing the rather long-range effects on each 
other (extending over distances of about 10-5 cm) of two metals in contact. A method appropriate for de­
scribing such effects is obtained by generalizing the Nakamura theory of position-independent superconduc­
tivity. This method leads to results qualitatively similar to those obtained previously by Parmenter using 
heuristic arguments. The various methods of treating position-dependent superconductivity are all different 
limiting forms of a very general form of theory due to Blatt, or, in an equivalent but particle-nonconserving 
form, due to Bogoliubov and Valatin. The saddle-point method of summing cluster expansions, used in both 
the Blatt and Nakamura theories, is shown to be mathematically justified, in contrast to the situation with 
most condensed systems. 

I. INTRODUCTION 

THERE is a growing body of experimental ev­
idence1"6 which suggests that a sufficiently thin 

film of superconducting metal deposited on bulk normal 
metal will have its superconductivity quenched by the 
presence of the normal metal. Conversely, a sufficiently 
thin film of normal metal such as copper apparently 
can be made superconducting by being deposited on 
bulk superconducting metal. In both cases, the critical 
film thickness is of the order of, or somewhat less than, 
the coherence distance of the superconductor. For 
homogeneous soft superconductors the critical thickness 
may be several thousand Angstroms.7 In an attempt 
to understand these effects, the writer8 has generalized 
the Bardeen-Cooper-Schrieffer (BCS) theory of super­
conductivity9 to the case where there is position 
dependence in the problem. The essential idea of the 
writer was to generalize the BCS expression for the 
energy density in a superconductor by adding a term 
representing the center-of-mass kinetic-energy density 
of the Cooper pairs. (In the BCS theory, there is no 
center-of-mass motion of Cooper pairs.) With the aid 
of this additional term, the theory was able to predict 
results in good qualitative agreement with experiment. 
The form of this additional kinetic-energy term was 
determined by heuristic arguments. In the present 

1 E. F. Burton, J. O. Wilhelm, and A. D. Misener, Trans. Roy. 
Soc. Can. I l l , 28, 65 (1934); A. D. Misener and J. O. Wilhelm, 
ibid. 29, 5 (1935). 

2 H . Meissner, Phys. Rev. 109, 686 (1958); 117, 672 (1960); 
Phys. Rev. Letters 2, 458 (1959). 

3 P. H. Smith, S. Shapiro, J. L. Miles, and J. Nicol, Phys. Rev. 
Letters 6, 686 (1961). 

4 P. Hilsch and R. Hilsch, Naturwissenschaften 48, 549 (1961); 
P. Hilsch, Z. Physik 167, 511 (1962). 

5 A. C. Rose-Innes and B. Serin, Phys. Rev. Letters 7, 278 
(1961). 

6 W. A. Simmons and D. H. Douglass, Phys. Rev. Letters 9, 
153 (1962). 

7 Critical thicknesses as small as several hundred Angstroms 
were found by Hilsch (Ref. 4). This presumably results from a 
decreased coherence distance, which in turn is due to a normal-
electron mean free path lowered by disorder scattering. 

8 R. H. Parmenter, Phys. Rev. 118, 1173 (1960). 
9 T. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 

108, 1175 (1957). 

paper we wish to replace the heuristic arguments by 
more precise considerations. Having done this, we will 
find a modification of the detailed form of the additional 
term. However, this leads to no qualitative changes in 
the theory. In particular, if we treat the order parameter 
€0fc as being approximately independent of wave vector k 
(as done in Refs. 8 and 9), we obtain the same form of 
integrodifferential equation for eo as was obtained be­
fore. The closeness of the present form of the theory to 
that of Ref. 8 insures that the two forms will make 
similar predictions with regard to a given situation. De­
tailed numerical calculations will not be carried out in 
this paper. 

The mathematical machinery necessary for carrying 
out our program is available in the work of Nakamura10 

and Blatt.11 Nakamura sought to reformulate the BCS 
theory so that it would be manifestly particle-conserv­
ing. Unlike BCS, Nakamura worked with many-electron 
wave functions that are eigenfunctions of total electron 
number. These wave functions are antisymmetrized 
products of two-electron wave functions (the same 
two-particle wave function for every pair of electrons). 
This two-particle wave function is a product of a 
singlet function of the spins of the two electrons times a 
spatial function of the distance separating the two 
electrons, the spin function being antisymmetric under 
interchange of the two-electron spin coordinates. Naka­
mura showed that the problem of calculating expecta­
tion values of the many-electron Hamiltonian with 
respect to such many-electron wave functions is very 
similar mathematically to that of calculating the parti­
tion function in the Mayer theory of the classical im­
perfect gas.12 In both problems, the desired result can be 
written as a so-called cluster expansion. Using the 
saddle-point method13 of analytically summing such 

10 K. Nakamura, Progr. Theoret. Phys. (Kyoto) 21, 713 (1959). 
11 J. M. Blatt, Progr. Theoret. Phys. (Kyoto) 24, 851 (1960); 

J. Australian Math. Soc. 1, 465 (1960). 
12 J. E. Meyer and M. G. Mayer, Statistical Mechanics (John 

Wiley & Sons, Inc., New York, 1940), Chap. 13. 
13 M. Born and K. Fuchs, Proc. Roy. Soc. (London) A166, 391 

(1938). 

2490 



P O S I T I O N - D E P E N D E N T S U P E R C O N D U C T I V I T Y 2491 

series, Nakamura showed that the resultant expression 
for the energy density could be made equivalent to the 
BCS expression by a suitable choice of the two-electron 
spatial function. 

Blatt11 generalized the work of Nakamura by taking 
the spatial part of the two-electron wave function to be 
an arbitrary function of the positions of the two 
electrons, rather than simply a function of the distance 
between the two electrons. This arbitrariness is, 
of course, restricted by the requirement that the 
two-electron wave function be antisymmetric under 
interchange of electronic coordinates. Thus, with the 
spin portion of the wave function being antisymmetric 
under interchange of the two spin coordinates (i.e., a 
singlet state), the spatial part must be symmetric under 
interchange of the two-electron position coordinates. 
Like Nakamura, Blatt took his many-electron wave 
function to be an antisymmetrized product of these 
two-electron wave functions (the same function of 
position and spin coordinates of the two particles for 
every pair of electrons). Such many-electron wave 
functions are eigenfunctions of total electron number. 
The expectation value of the many-electron Hamil-
tonian with respect to this many-electron wave function 
can be written as a series which is analogous to a cluster 
expansion. Blatt also used the saddle-point method of 
analytically summing such series to get an expression 
for the energy density. This expression properly goes to 
the BCS expression for the energy density in the limit 
where there is no position dependence left in the 
problem. 

Invoking periodic boundary conditions, we may 
expand the spatial part of the Blatt two-electron wave 
function as a double Fourier series, the coefficients of 
which are fkw. The BCS case corresponds to fkw 
= fkf>k,-k', i.e., / i s diagonal in k, —k'. In addition, there 
are three other limiting cases of special interest. The 
first case corresponds to / being nearly diagonal in k, 
—k' in the sense that all off-diagonal elements of / 
are much smaller than the diagonal elements. The 
second case corresponds to / being nearly diagonal in 
a different sense; namely that / be nonvanishing only 
for very small values of ( k + k ' ) , the center-of-mass 
wave vector of the electron pair. The third case corre­
sponds to / being Hermitian in k, —k' so that / may 
be made diagonal by a suitable unitary transformation. 

The first to these three cases is appropriate for 
treating deviations from position independence by 
means of perturbation theory. Blatt made use of this 
case for discussing the Meissner effect in a gauge-
invariant manner. The second case is to be discussed 
in this paper. I t is the appropriate method for under­
standing the rather long-range effects of normal metals 
on superconducting metals, and vice versa. The third 
case is equivalent to a generalization of the usual 
Hartree-Fock method. A set of orthonormal one-
electron orbitals is chosen. By pairing each orbital with 
its time-reversed mate, one can set up a many-electron 

wave function similar to the BCS ground-state wave 
function. By minimizing the expectation value of the 
many-electron Hamiltonian with respect to this 
many-electron wave function, one finds equations for 
the one-electron set of orbitals which are self-consistent; 
i.e., those which are solutions to the one-electron 
Schrodinger equation containing the effective field due 
to all the electrons except the one occupying the given 
orbital. Like the Hartree-Fock method, there is a 
contribution to this effective field resulting from correla­
tion between parallel-spin electrons (the exchange field). 
Unlike the Hartree-Fock method, there is also a contri­
bution to the effective field resulting from correlation 
between antiparallel-spin electrons. 

The particle-nonconserving analog of this third case 
has been developed by Gorkov,14 who introduced a 
version using one-electron Green's functions. I t appears 
difficult, if not impossible, to interpret the experimental 
results mentioned before in terms of the picture 
represented by this third case. The essential difficulty 
lies in the fact that appreciable position dependence of 
the effective self-consistent potential will be restricted 
to regions lying within a Debye screening length 
(^10~ 8 cm) of an interface between two different 
metals. The modification of the one-electron wave 
functions near the Fermi level by this effective field will 
be restricted to regions lying within a Fermi wavelength 
(<~10-7 cm) of the interface. I t is only over such 
regions that the perturbing electric fields appearing in 
the self-consistent Hamiltonians for the various one-
electron orbitals are large enough to appreciably modify 
the probability density of the orbitals, despite the fact 
that there is correlation between antiparallel-spin 
electrons extending over the Pippard coherence distance 
£o, orders of magnitude larger than the screening length 
or the Fermi wavelength. The magnetic analog of this 
is the screening out of a magnetic field within the 
penetration depth X, which may be much less than £0. 
The small Fermi wavelength in a metal is directly 
attributable to the relatively large kinetic energies 
associated with conduction electrons in a metal. The 
larger the kinetic energy of an electron, the larger must 
be the electric field to appreciably modify the electron's 
trajectory.15 

14 L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958) 
[translation: Soviet Phys.—JETP 7, 505 (1958)]. 

15 Several recent calculations using the Gorkov method [e.g., 
P. G. de Gennes and E. Guyon, Phys. Letters 3, 168 (1963)] 
appear to obtain reasonable agreement with experiments on 
superposed films of superconductors and normal metals. This 
agreement seems to be reached at the expense of self-consistency 
of the calculations; i.e., the one-electron wave functions which 
upon time-reversal pairing give rise to the position-dependent 
pairing potential are different from those wave functions which 
are eigenfunctions of the one-electron Hamiltonian containing 
this same pairing potential. The negligible long-range effect of 
the pairing potential on the one-electron wave functions is con­
sistent with the fact that the static long-wavelength longitudinal 
dielectric constant is indifferent to the presence or absence of the 
superconducting phase in a superconductive metal [see, e.g., 
R. E. Prange, Phys. Rev. 129, 2495 (1963)]. 
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In contrast, if we allow the electric field to modify the 
center-of-mass motion of the various Cooper pairs 
(rather than the motion of individual electrons), we 
have the possibility of position dependence extending 
much farther into the metal. Because of the very small 
kinetic energy (possibly even negative) of the Cooper 
pairs, minute electric fields can appreciably modify the 
probability density of the pair wave functions. In effect, 
we have a de Broglie wavelength for pairs which is 
much larger than the Fermi wavelength of the electrons. 
It should be noted that there is no a priori reason that 
this de Broglie wavelength be equal to the Pippard 
coherence distance. The discussion of the present 
paragraph corresponds to the second of our three cases. 

A particle-nonconserving generalization of the Gorkov 
theory (and thus also of our third case) is due to 
Bogoliubov and Valatin.16 The additional generality is 
obtained by constructing the many-electron generalized 
Hartree-Fock wave function from paired single-fermion 
orbitals, rather than single-electron orbitals. (As long 
as we restrict ourselves to the case of zero current and 
zero magnetic field, as we are doing in this paper, 
it is appropriate to pair time-reversed single-fermion 
orbitals.) The use of single-fermion orbitals (represent­
ing part of the time an electron, part of the time a hole) 
rather than simply single-electron orbitals allows the 
Bogoliubov-Valatin formulation to be as general as 
that of Blatt, a fact recently pointed out by Baranger.17 

By the same token, both formulations appear to be 
equally difficult to solve. As has already been discussed, 
the specialization to one-electron orbitals is too restric­
tive to obtain long-range effects. The more general 
single-fermion approach does allow the possibility of 
long-range effects, since a fermion built out of electrons 
and holes near the Fermi level may have a much smaller 
kinetic energy than that of an electron near the Fermi 
level (due to cancellation of electron and hole kinetic 
energies). The Gorkov formulation can be made 
equivalent to that of Bogoliubov-Valatin only by 
introducing a more general form of single-particle 
kinetic-energy operator than is conventionally used. 

Henceforth, we will deal with the second of the three 
limiting cases of the Blatt theory. Rather than attempt­
ing to analyze this second case in detail by making the 
appropriate specialization of the Blatt theory, we shall 
choose the alternative of making the appropriate 
generalization of the Nakamura theory. Such a choice 
leads to greater simplicity of treatment and ease of 
understanding. In carrying through the analysis, we 
will take pains to demonstrate the applicability of the 
saddle-point method of summing cluster expansions,13 

the reason being that the method is usually thought to 
be inapplicable to a condensed system, and a super-

16 N. N. Bogoliubov, Usp. Fiz. Nauk 67, 549 (1959) [transla­
tion: Soviet Phys —Usp. 2, 236 (1959)]. J. G. Valatin, Phys. 
Rev. 122, 1012 (1961); J. G. Valatin, in Lectures in Theoretical 
Physics, edited by W. E. Brittin, B. W. Downs, and J. Downs 
(Interscience Publishers, Inc., New York, 1961), Vol. IV. 

17 M. Baranger, Phys. Rev. 130, 1244 (1963). 

conductor is certainly a condensed electron system. 
Neither Nakamura nor Blatt gave sufficient attention 
to this point. 

II. THEORY 

In the BCS theory of superconductivity, the ground-
state wave function is 

^of=UL(l-hy^+hk^ckt^H^o. (l) 
k 

$o is the vacuum-state wave function. The Ck's are the 
usual electron creation and destruction operators. The 
parameters hk lie in the range O^fe.^1. This ground-
state wave function does not characterize a state of 
fixed number of electrons. That portion of SlV which 
represents the case of precisely 2N electrons being 
present is given by18 

1 
— II(1 -**') 1 / 2 E fe1/2 (1 -hk)-^ckt*c-H*Y$o. (2) 
Nl k' k 

This is equivalent to an antisymmetrized product of N 
two-electron wave functions (the same two-electron 
wave function for each of the N pairs of electrons). 
Thus, we choose a many-electron wave of this type for 
our ground state, i.e., 

* o = E ( - i m x ( l , 2 ) x ( 3 , 4 ) - • -X(2N-\, 2N)}, (3) 
P 

P being the permutation operator (of parity p) working 
on the 2N electronic coordinates, each coordinate 
including position r and spin a. Corresponding to the 
fact that opposite spin electrons appear together in 
(1) and (2), the two-electron wave function x must be 
a singlet, i.e., 

1 
X(l,2) = — [ a ^ O j S ^ - j S ^ O a ^ X r i , ^ ) , (4) 

v2 
a and /? being the usual spin functions. The spatial 
orbital \p must be symmetric under interchange of 
ri and r2. 

We wish to calculate the expectation value, with 
respect to Ŝ o, of the many-electron Hamiltonian 

Pi2 

#=E—+§£**, (5) 
i 2m %^i 

pi2/2m representing the kinetic energy of the ith 
electron (or, in the effective-mass approximation, the 

18 Here we are making the assumption that hk^l. Depending on 
the detailed form of the electron-electron interaction, this may 
or may not be the case. Certainly hk —•> 1 as k moves deep inside 
the Fermi sphere in reciprocal space. For convenience, we shall 
continue to treat hk as though it fails to reach unity. An alternative 
procedure is to redefine the vacuum state to include those electrons 
for which hk=\. In any case, the final results are independent of 
what is assumed for hk. 
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Bloch energy), and 4>%j representing the potential energy 
of interaction between the iih and yth electrons. 
Nakamura has proved that this expectation value 

JFo=(¥o,ff¥o)/(¥o,¥o) 

can be written in the form19 

TT0=E,«(-' -*»r 'Oil ftim,M!/ 

(6) 

XE'II&im,M!, (7) 
mi I 

<§(•• •mv--) = Yj m(h+vi)+ J^mmi'Vw 

+hT,mi(mi—l)vu, (8) 

where 

J,= / - i ( - l )»- i L(rhr2)t(t2,rz)- • -HuwO^r", (9) 

; {=/- i(_l) i - i& r i /V(r,,r,)*(r4,r,)• • ^(r„,r ,) 

XE(^2/2w)^(r1)r2)^(r3,r4)- • • 
i 

Xrf-( r ,w,r«)^" , (10) 

X J E 0^( r i , r^ ( r i , rO • • ^( r»w, r„)dV*', (H) 

»*/ 

f l l ^ ^ / ^ C - l ) " - ' ' * ! - 1 * ! ' 
- / / 

^(ri,r2)iKr2,r8)-

X^(r2z,ri)J £ 0^(ri/,r2O^(r2',r8O- • • 

X < K * 2 ^ 0 ^ 2 W Z \ (12) 

[Note: Since magnetic fields are of no concern in the 
present paper, yj/ has been assumed to be a real function, 
i.e., not complex. A crystal of unit volume has been 
assumed.] The integrals appearing in bi, h, vi, and vw 
are the so-called cluster integrals, while the sums 
appearing in (7) and (8) are cluster expansions. X^ 
and Hz represent sums and products, respectively, over 
all positive integers I, there being a specified non-nega­
tive integer mi associated with each value of /. X)»»/ 
represents a sum over all possible ways of choosing the 
set of numbers mi consistent with the restraint 

i 
(13) 

19 Nakamura's proof of this result is independent of the func­
tional form of ^(ri,r2). Thus, his proof holds more generally than 
for the special case of interest to him, where \p was a function only 
ofri—r2. 

Let us now consider ^(ri,r2) as a function of 

Ri2=i( r i+r2) , 

1*12=ri— *2 , 
(14) 

the center-of-mass position of the two electrons, and 
the interelectronic distance. Thus we write 1̂ (̂ 12,1*12), 
although it must be understood that \[/ is not the same 
function of Ri2 and ri2 that it was of ri and r2. (Note that 
\p must be an even function of ri2, since \f/ is symmetric 
under interchange of ri and r2.) The basic assumption 
of the present paper is that ^(R#,r#) is a very slowly 
varying function of R#. (The validity of this assumption 
will be checked in Sec. III.) Specifically, with respect to 
the clusters 

^(Ri2,ri2)^(R23,r23)- • •^(R2M,r2i,i) 

appearing in the integrals defining bi, U, and vi, we 
assume that the 21 distinct R*,;+i may all be replaced 
by the center-of-mass coordinate of the cluster, 

R = ( 2 / ) - ' E r i , (15) 

The major contribution to these integrals will come 
from those regions of configuration space where all 21 
electrons lie close to one another, since ^(R«y,r#) and 
4>ij are presumed to be appreciable in size only when r# 
is not large. Thus, R# will not be very different from R, 
and the slowness of the variation of ^(R#,r#) with R# 
will allow the latter to be replaced by R. In a similar 
fashion, with respect to the two clusters appearing in 
the integral defining vw, we assume that the R# may 
all be replaced by the center-of-mass coordinate of the 
2(1+V) electrons composing the two clusters. 

For the purposes of the present paper, fcj may be 
assumed independent of the center-of-mass coordinate 
R#. It does, however, depend on both the position and 
velocity of relative motion of the two electrons. We 
shall Fourier-expand <f> and \f/ with respect to r# i.e., 

lKR,rtf) = £ /*(R)exp(&Ttf), 
k 

(16) 

Vkk'= / exp(—&•!•#)&,• exp(+jk'«ry)rfVy. (17) 

We obtain 

ft« = J - 1 ( - l ) ' - 1 / ' < « J £ / b " > (18) 

*,=2(-i),-iJr1/Wi;/**«-i> 

Xt(hW/2m)fk*+l(W/&m)(VRfk)
2l, (19) 

•i»,= 2 ( - l ) ' - 1 i , - 1 f d*R E <Jk-f»yifvJi?lVw. (20) 
J kk' 
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In these last three equations, the R dependence of /& is 
understood. Equations (18) and (19) follow immediately 
from the previous equations; Eq. (20) is proved in 
Appendix C of Nakamura's paper. Equation (19) 
contains two terms giving, respectively, the internal 
kinetic energy and the center-of-mass kinetic energy of 
the two electrons in each Cooper pair. I t is this second 
term that distinguishes the present theory from that 
of Nakamura. 

We assume that Vkkf vanishes when k = k ' . This 
corresponds to saying that that part of <£ which does 
not scatter has been absorbed into the one-electron 
portions of the many-electron Hamiltonian. I t is now 
easy to prove that 

Thus, Eq. (7) can be written more simply as 

i dbi 

where QN is defined as 

mi I 

(21) 

(22) 

(23) 

At this point we introduce the saddle-point method13 

of evaluating QN. Define 

i 

Q(z) = eG^K 

Expanding the exponent in (25), we get 

But 
JV-O Nl i 

(24) 

(25) 

(26) 

(27) 

where, as in (7) and (23), the summation is over all 
possible ways of choosing the set of non-negative 
integers mi consistent with the restraint (13). Combin­
ing (11), (23), (26), and (27), we get the result20 

6(*)=E *NQN. (28) 

Choosing a contour of integration in the complex z 
plane lying within the circle of convergence of (28), 
we may write 

2iri J 
-(JV+l), Q(z)dz. (29) 

20 Here we are assuming that the power-series expansions in 
Eqs. (24) and (28) both have finite radii of convergence about 
the origin in the z plane. I t will become clear that this is true 
provided hk5*l, the condition mentioned in Ref. 18. 

We take this contour to be a circle of radius Z centered 
on the origin. Thus 

Now 
-7T 

QN= (2irZN)-1 \ expZGoiZe^-iNdldd. (30) 

d 

dd 

d2 

dd2' 

• [ G o ( Z ^ ) - * ^ ] = CGi (Zc«) - iV] , 
t 

[Gv(Zea)-iNd]= -G2(Zeie). 

We specify that the radius Z be such that 

From (18) and (24), we have 

G2(s) = E ( l + / ^ ) - 2 . 
h 

(31) 

(32) 

Assuming ^(R,r) to be real and to represent vanishing 
velocity of relative motion of the two electrons, it 
follows that fa is real, so that G2(Z) is positive. Thus 
the point z=Z(0=O) is a saddle point of z~{N+l)Q(z), 
a maximum with respect to variations in 6, a minimum 
with respect to variations in Z. Expanding Go(Zeie) 
— iN6 as a power series in 0, keeping only the constant 
term and the term quadratic in 6, we get 

QN^ {2TrZN)-h°^ / exp[- iG 2 (Z)0 2 ] J0 , 

I t can be shown that G2(Z)^>1, so that the integration 
limits ±7r can be replaced by ± <*> with negligible error. 
Thus, 

QN=Z-NeG^[2TG2(Z)2~m, 

lnQN=G0(Z)-N I n Z - i l n [ > G 2 ( Z ) ] . (33) 

In order to evaluate Eq. (22), we need to differentiate 
InQjv with respect to bi. In doing this, we can ignore the 
last term on the right-hand side of (33). From (32) 
we see that G%(Z) is very insensitive to the particular 
values of /&2Z, since the major contribution to the sum 
over k comes from regions of k space where /*. is effec­
tively zero. (This is also the reason why G2(Z)^>>1.) 
Thus lnG2(Z) should be insensitive to variations of bi. 
In differentiating (33) with respect to bi, we should 
remember that Z varies with bi. However, we can 
actually ignore this, since Eq. (31) shows that the 
partial derivative of Go(Z)—NlnZ with respect to Z 
will vanish. Thus, 

dbi 
hiQN=Z\ 

so that (22) becomes 

Wo^ih+viibtf1. 
i 

(34) 

(35) 
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With the aid of Eqs. (18)-(20), this can be written 

W0 = jd*RWo(R), 

where we define 

Wo(R) = 2E(i+/**z)-

(36) 

[- /fi2k\ 

\2mJ k 

ft2 

+—(V^)2Z(1+/,2Z)-

+ 2 E ( )vj ) . (37) 

I t should be understood that fk and fw are both 
functions of R in this expression. By interchanging k 
and k', we can write the potential-energy term in a more 
symmetric fashion, 

^ o ( R ) = 2 E ( i + / ^ ) -
/fl2k\ 

L\ 2m/ 

+—(v*/*)2£(i+/*2£)-1 

8m 

fkfk,Z(l-fkfk,Z) 
+ZVkk . (38) 

**' (l+fk*Z)(l+fk,*Z) 

Equation (31), the defining equation for Z, becomes 

J k \l+fk
2Z/ 

(39) 

Now defining 

hk^
2=(l+fk

2Z)-^fkZ"2, (40) 

we transform the last two equations into 

/fi2k\ fi2 

Wo(R) = 2 £ ( ) * * + — E [ 4 f e ( l - f e ) ] - 1 ( V ^ ) 2 

k\2m/ 4m k 

+ Z 7^[A*(1-A*)^(1-A*0]1/2 

•LF^fcfc , (41) 

and 

/ 
d*Rj:hk=N. (42) 

Here A* and A*/ are functions of R. 
I t is appropriate to point out why the saddle-point 

method of summing cluster expansions worked in the 
present problem, despite the fact that a superconductor 
is a highly condensed system. Consider Go(z). 

Go(*) = £ - ^ E E ^ ( - l ) H ( / A ) ^ 

= -Eln(l+/*2*) 
12 R,k 

QR.k L \l-hJ\Z/. 
(43) 

Here we have replaced the integration over the crystal 
fdzR by the corresponding summation over all atomic 
sites I I E B ) ^ being the atomic volume. This replace­
ment is justified by the slow variation of fk(R) with R. 
From the definition of Q(z), we have 

Q(*)=\ll\i+( ^ 
R,k L 

(44) 

I t is clear that Go (z) has singularities along the negative 
real axis at those points where 

z=-Zhk-
l(\-hh). (45) 

I t will be seen presently that, independently of R, 
Ayfc(R) is less than or greater than one-half dependent on 
whether k lies outside or inside, respectively, the Fermi 
surface in k space. Thus those k lying inside the Fermi 
surface give rise to singularities lying inside the contour 
of integration in Eq. (29). This is a consequence of the 
condensed nature of the system we are studying. For 
most problems, singularities in Go would imply singular­
ities in Q=exp Go. Singularities in Q inside the contour 
of integration would, of course, negate the applicability 
of the saddle-point method. For our particular problem, 
however, singularities in G0 do not imply singularities 
in Q. As can be seen from (44), the singularities of Go 
correspond to zeros of Q, so that the saddle-point 
method is applicable despite the condensation of the 
system.21 Equation (45) shows that it is necessary to 
assume A ^ l in order that both Go(z) and Q(z) have 
finite radii of convergence about the origin.20 A further 
difficulty occurring in the theory of the condensed 
imperfect gas results from the volume dependence of 
the cluster integrals.22 There is no analogous problem 
here because the total volume occupied by the electrons 
is set by the dimensions of the crystal, not by the 
degree of condensation of the electrons. 

The last term on the right-hand side of (41) is missing 
from the BCS theory because of truncation of the many-
electron Hamiltonian in that theory. I t turns out that 
this term is independent of R, and thus may be ignored 
in determining the dependence of A& on R. The R 

21 This result appears to be a consequence of the type of cluster 
integral bi occurring in the present theory, the so-called chain 
cluster integral, in contrast to the more general form of cluster 
integral appearing in imperfect-gas theory. 

22 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1956), Chap. 5. 
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independence of this term is a consequence of the 
dependence on k and k' of Vkk'hkhk>, as will become 
apparent presently. Let us redefine the zero of energy 
of Wo such that this term disappears from (41) and, in 
addition, the first term on the right-hand side of (41) 
becomes 2^k ejjik, where 

fi2 

e f c = — ( k 2 - k F
2 ) , 

2m 
(46) 

and kp is the Fermi momentum (i.e., we take the 
one-electron energy €& to be zero at the Fermi surface). 

I t is instructive to rewrite the second term on the 
right-hand side of (41): 

fi2 

— Z [ 4 f c ( l - f e ) ] - 1 ( V E f e ) 2 

4m k 
*t 2 

= — Z[ (V^( f e ) 1 / 2 ) 2 +(Vi . ( l - - f e ) 1 / 2 ) 2 ] . (47) 
4m k 

In the writer's previous paper,8 it was assumed that the 
term (&2/4w)(V#(/4)1/2)2 appeared only for k>kF, and 
the term ( / Z 2 / 4 W ) ( V E ( 1 — fe)1/2)2 appeared only for 
k<kF, whereas the analysis of the present paper has 
demonstrated that both terms should appear for every k. 
Intuitively, the first term represents center-of-mass 
kinetic energy of a Cooper pair of electrons; the second, 
center-of-mass kinetic energy of a Cooper pair of holes. 
The inclusion of both terms will modify quantitatively, 
but not qualitatively, the results of the previous paper. 
For €k large and positive (i.e., hk—*0), only the electron 
term is important; for ê  large and negative (i.e., 
hk—>l), only the hole term is important. 

We now wish to find the function hk(R) which 
minimizes Wo. This is obtained from the Euler-Lagrange 
equation 

r d a -i 
VR PFo(R) = 0. (48) 

Ldhk dVafeJ 

Inserting Wo(R), we get 

26 , - (^ 2 / 8m){[ fe ( l - f e ) ] - 1 / 2 Vi 2 } 2 f e+( l -2 fe ) 

X [ f a ( l - f e ) ] - 1 / 2 E n , [ f e ( l - f e ) ] + 1 / 2 = 0 . (49) 
kf 

Anticipating the fact that VkW is an even function of e& 
and €*/, we can immediately infer from (49) that 
(l — 2hk) is an odd function of €*> Now fe-^0 for 
€k^>0, hk—>l for efc<<C0, this holding for all R. Therefore, 

E * f t * ( R ) = # , (50) 

a stronger condition than that of Eq. (42). [ I t should be 
remembered, in comparing (42) and (50), that we are 
considering the crystal to have unit volume.] Equation 
(50), in effect, states that the density of Cooper pairs is 
uniform throughout the crystal (no net change density). 

III. THE SUPERCONDUCTING METAL 

Henceforth we shall assume 

Vkh'=±V for |e*|, \ek>\<fta 
= 0 otherwise, (51) 

hcc being a mean phonon energy. The minus sign 
(attractive interaction) is to be taken for the super­
conducting metal to be discussed in this section; the 
plus sign (repulsive interaction) is to be taken for the 
normal metal to be discussed in the following section. 
We write 

A * = i [ l - (€*(e*2+€ojb2)-1/2)], (52) 
so that 

l-2fe=€*(e*2+e0*2)-1 /2 , (53) 

2(fe(l-fe))1 /2=60fc(e,2+60 .2)-1 /2 . (54) 

Since hk is a function of R, the order parameter eo& also 
is.23 We shall restrict ourselves to the case where hk 
and eok vary along one direction only in the crystal, say 
the x direction. Equation (49) can be rewritten 

/€<Wfc'\ 
WT.\ — ) (€*'*+eo*2)-1'2 

*' \ Co*/ 

ft2 / 1 d \2 

(— (e*2+€0fc
2)1/2— ) (e*2+e0fc

2)-1/2=l. (55) 
&m\eok dxl 

(The prime on the summation sign indicates that k' 
is restricted by the condition \ek\<hoi.) If e^ were 
independent of x, then Eq. (55) implies that e0fc would 
also be independent of k (for |e&| <^co). Since we are 
especially interested in the value of e0k at k=kF, the 
Fermi surface, we shall solve (55) for this case, making 
the approximation that (eoA//eo/k) = l in the k' summa­
tion. Designating the value of eo& at the Fermi surface 
by eo with no k subscript, and replacing the summation 
by the equivalent integration, we have 

N(0) V arcsinh(/ko/eo) - (h2/Sm) (d2/dx2) (l/e0) = 1, (56) 

N(0) being the density of one-electron states (of a 
given spin) per unit energy at the Fermi level in the 
metal in the normal state. Since under all conditions of 
interest to us eo<3Cftco, we may approximate 

arcsinh(feo/eo) by ln(2#co/eo). 

We define the constants 

eo(oo) = 2f^e~llN^v 

2h 
5 - I 

1/2 

8X^(0)7*^0 
plfN(0)V 1 

and the variable 

z(a) = €0(«>)/€o(aO, 

(57) 

(58) 

(59) 
23 Unlike the position-independent case, eQk is not necessarily 

equal to the excitation energy for producing a normal carrier, a 
fact which will be discussed in Sec. VI. 
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so that Eq. (61) becomes 

282(d2z/dx2) = lnz. (60) 

This is the same equation obtained previously by the 
writer.8 The only difference lies in the fact that the 
present definition of 8 is a factor of v2 larger than that 
of Ref. 8 [a consequence of the fact that both terms 
appear in Eq. (47)]. As before, a first integration of 
(65) gives 

8{dz/dx) = ± [K+zQnz-1)]1/2, (61) 

a second integration giving 

c=±8J lK+z'(\nz'-l)y-ll2dz', (62) 

20 and K being integration constants. The constant 
€0(oo) is just the constant value of e0 to be found in the 
interior of a bulk superconductor [i.e., eo(°°) is the 
BCS value of eo]. Thus, in such a bulk superconductor 
we want z —> 1 as x —•» oo. At the same time we want 
(dz/dx) —> 0. This means that for a bulk superconductor 
we must take 

K=l. (63) 

For this case, a plot of 1/z versus dzx/8 can assume the 
two possible forms diagrammed in Fig. 1 of Ref. 8. 
The characteristic length 8 can be written 

where 
8 = K^o\F/N(0)V3m, 

AF—Zir/kF 

is the Fermi wavelength, and 

£o=[foF/ireo(°°)] 

(64) 

(65) 

(66) 

is the BCS form of the Pippard coherence distance. 
(VF is the velocity of electrons at the Fermi level.) 
Typical values for a soft superconductor are \F/2TT 
= 10~8 cm, 5=10~6 cm, £0=10-4 cm. I t should be 
pointed out that critical thicknesses of metallic films 
(either normal on bulk superconducting material, or 
vice versa) are about an order of magnitude larger than 
8, as was found in Ref. 8. This results from the weak 
dependence on z of the term Ins appearing in Eq. (60). 

In the previous section, we made the basic assumption 
that the two-electron orbital *A(R,r) was a much more 
slowly varying function of the center-of-mass coordinate 
R than of the relative coordinate r. We are now in a 
position to get a measure of the accuracy of this 
assumption. Define 

Xi= 

X2= 

J |V,̂ (R,r) | 2dh/ J |iKR,r) | W ] , (67) 

[J | V**(R,r) | 2d*r/ j I *(»,r) 12^] • (68) 

Ai is a measure of the distance over which there is 
appreciable variation of ^ with respect to r ; X2 is a 
measure of the distance over which there is appreciable 
variation of \j/ with respect to R. I t is straightforward 
to calculate 

X I ^ X F / 2 T T , (69) 

X 2 ^ — I n s . 
dR 

(70) 

We see that Xi is two orders of magnitude smaller than 
X2, in agreement with our previous assumption. 

IV. THE NORMAL METAL 

In Ref. 8 the discussion of normal metals was 
restricted to the case Vkk> = 0. Here we wish to general­
ize to the case of repulsive electron-electron interaction, 
namely Vkk> = + V. Inserting such a Vkk

r into Eq. (49), 
we can see, by inspection, the trivial solution hk=0 for 
€ A > 0 , hk=l for €A;<0, corresponding to the position-

independent normal metal. In addition, however, there 
are nontrivial solutions which can be obtained almost 
as easily. The key observation is the fact that 

fk=th/z(i-h)y* 

need not necessarily be a positive number, although our 
method of defining hk

1/2 [Eq. (40)] might lead one to 
infer that fk^0. Actually there is no inconsistency in 
allowing hk

l12 to assume both positive and negative 
values. [(1—h)112 will always be non-negative.] We 
allow the signature of hk

lf2 to be a random function of 
k, consistent with the condition that (1 — 2hk) be a 
continuous, odd function of ek. The potential-energy 
term in (49) thus becomes negligibly small (in the limit 
of a large crystal) and may be ignored. By allowing this 
random variation in the signature of h1'2, we have 
effectively quenched the repulsive interaction. 

Equation (49) now becomes 

where 

Thus 

ek- (h2/16m) (d2hk/duk
2) = 0 , (71) 

_ - ^ ( f e ( l - f e ) ) ~ i / 2 _ . (72) 
duk dx 

uk*=(!P/Smet)(kt-l+Cf), 

where Ci?— 1 is an integration constant to be set by 
boundary conditions. Consider, for the moment, the 
case ek>0. 

(* /»)(Sme*) 1 ' 2 ^- 1 (&»€„)1/2 jlhh(l-h)Jrinduk 

= ±1 flhk(l-hk) (fa-l+C^y^dfa 

= =Farcdn(±fe1/2,C*). 
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arcdn is the inverse elliptic function (i.e., elliptic 
integral); Ck is the modulus of the elliptic function. 

hll2= ±dn(±-(8fneky<\ Ck\ . (73) 

(The two choices of sign in this expression are independ­
ent of each other.) In the limit hk<&\. 

(*/*) (Smeky
l2=±* /"[**(**- i+c#)irlf*dhk 

= ± a r c c o s h ± [ V ( l - ^ 2 ) ] 1 / 2 , Ck
2<l 

= ± a r c s i n h ± [ V ( C f c
2 - 1 ) ] 1 / 2 , C?> 1 

or 
cosh /oo \ 

± ^ 1 / 2 = const X . (-(Smek)
l!2). (74) 

sinhVft / 

This is the solution obtained in Ref. 8. In the opposite 
limit hk —> J, Eq. (74) should be modified by replacing 
(Smeky

l2 by (4:mek)
112. We have thus far been considering 

the case ek>0. Expressions analogous to (73) and (74) 
hold for the case efc<0 [(l-hk)

lf2 replacing (h)112, 
and | ek | replacing e J . 

V. BOUNDARY CONDITIONS 

Before we can apply the results obtained thus far to 
problems involving two different metals in contact, we 
must discuss boundary conditions. We are immediately 
confronted with the difficulty that the true boundary 
conditions for any pair of electrons are not separable in 
terms of internal and center-of-mass coordinates. Thus, 
we are forced to replace the true boundary conditions 
by approximate ones which are separable.24 Specifically, 
we assume that the twro-electron orbital ^(Ri2,ri2) 
satisfies periodic boundary conditions with respect to 
the internal coordinate ri2, while there is continuity, as 
a function of the center-of-mass coordinate R12, of 
both \J/*\f/ and ^ * V B ^ . I t should be noted that not only 
are we assuming separability of boundary conditions, 
but in addition a possible loss of phase coherence of the 
center-of-mass motion at the boundary. (This follows 
from specifying that \p*\p and ^ * V ^ be continuous 
with respect to R12, rather than \p and VR\p alone.) 
Because of lack of geometrical perfection, on the atomic 
scale, of most interfaces experimentally realizable 
(epitaxially grown interfaces being a possible exception), 
it seems reasonable to assume that Cooper pairs passing 
through the interface will be "diffusely refracted" with 
consequent loss of phase. I t should be added that there 
will be no phase coherence between two electrons 
on opposite sides of the interface (that is, two such 
electrons cannot form a Cooper pair) because of 

24 A similar use of separable, approximate boundary conditions, 
with regard to a two-electron example of ferromagnetism, has 
been made by J. C. Slater, H. Statz, and G. F. Koster, Phys. Rev. 
91, 1323 (1953). 

the lack of conservation to total momentum during 
virtual exchanges of phonons between the two electrons. 
In passing from one electron to the other, a virtual 
phonon is refracted at the interface (with consequent 
change of its momentum) because of the difference 
in elastic properties of the two metals forming the 
interface.25 

To simplify the discussion, we shall restrict ourselves 
to interfaces between two metals which differ in the 
strength of the electron-electron interaction, while 
having the same one-electron energy levels. Under such 
conditions, the boundary conditions on \f/ are equivalent 
to continuity of fe,(R) and V«/to(R) at the interface, 
but not necessarily continuity of (&&.(R))1/2. With regard 
to the interface between a superconductor and a normal 
metal, it is clear that hk

l/2 cannot be both continuous 
and nonvanishing at the interface, because of the fact 
that hk

l12 is positive in the superconductor but negative 
(for some values of k) in the normal metal. 

In practice, it appears difficult, if not impossible, to 
get continuity of both hk and V A because of the 
necessity for making approximations in solving Eq. (49) 
for a superconductor (e.g., the approximation that the 
order parameter e^k is independent of k). In effect, any 
reasonable approximation for solving the nonlinear 
integro-differential equation for hk is incompatable with 
the boundary conditions. This impasse can be resolved 
by relaxing the boundary conditions in the following 
manner: hk is made continuous as before; but rather 
than having continuity of V A for all k, we require only 
continuity of a suitably weighted average of VRhk, the 
averaging being over values of k. On physical grounds 
we shall assume that such a suitably weighted average 
is the surface-energy density associated with any 
discontinuities in Vizfet at the surface of a crystal. We 
shall now calculate this surface energy. Consider that 
portion of Wo due to center-of-mass kinetic energy of 
electron pairs, which, from Eq. (37), can be seen to be 

W0'= (fi2/4m) fd*R E ( l + / ^ ) - 2 ( V i e A ) 2 Z . (75) 

Note that each term in the k summation is invariant 
to replacement of fkZ

l/2 by its reciprocal. We make this 
replacement for all k<kp. Next, we expand each term 
K ^ F as a power series in fk~lZ~1,2

y 

W = Z L(-i)Mz'(W—Ws/*1)2 

k>kF 1 J \4ml/ 

+ £ £(- i)wz- ' /W—W*/r02- (76) 
k<kF 1 J \4ml/ 

This is a cluster expansion in terms of electrons lying out­
side the Fermi surface and holes lying inside the Fermi 

26 This is the reason the effective electron-electron potential V 
can be taken to change discontinuously at an interface between 
two metals, V being position-independent elsewhere. 
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surface. Each term in the I summations can be rec­
ognized as center-of-mass kinetic energy of a cluster of 
21 electrons for k>kF, a cluster of 21 holes for k<kF, 
the former cluster being represented by the wave 
function fk

l, the latter cluster by the wave function 
fir1* Here the kinetic energy is written as the positive 
square of the gradient of the wave function; a more 
conventional way of writing such an energy is in terms 
of the negative of the second derivative of the wave 
function, i.e., 

wv'=x; zi-iy-wf^RfX—vR
2fA 

JOJCF i J \ Ami / 

k<kF i J \ Ami / 

(77) 

WQ" differs from Wd by a surface integral, i.e., 

WV= WQ"+ fd>RWSo(R), (78) 

where 
fi2 

wSQ(K)=— E E ( - i ) w ^ - 1 / ^ - V ^ z 

4m k>kF i 

ft2 

+— Z Zi-iy-'Z-H-'f^n-VRfr1 (79) 
AM k<kF I 

is the desired surface-energy density. Here n is the unit 
vector normal to the surface. By analytically summing 
the I series, and rewriting /*. in terms of hk, we get 

fi2 

WS0(R) = —n.[E ( l - A * ) - ^ * * * 
&m k>kF 

+ Z f e r 1 V i 2 ( l - f e ) ] . (80) 
k<kF 

Since (1 — 2hk) is an odd function of ek, it follows that 
the two summations, ^2k>kF and J2k<kF9 make equal 
contributions to TFso(R). Thus, 

%2 

Wso(R)= n - V f l E l n ( l -A*) . (81) 
Am k>kF 

Rewriting hk in terms of the order parameter €0k as 
given by Eq. (52), assuming eo* to be independent 
of k, and replacing the summation by the equivalent 
integration, we get 

= - ( ^ 2 / 4 w ) n - V ^ ( 0 ) f m - | l + \de 

Jo 2L ( € ' + € 0
2 H 

= - (^2/8w)(7r-2)iV(0)€o2n.Vi2(l/€o). (82) 

This expression differs from the corresponding expres­

sion in Ref. 8 only by the additional factor (71-—2). 
Equation (80) differs from the expression of Ref. 8 
through the factor (1 —fe)_1 for e/b>0, the factor hk"1 

for €*<0. 

VI. EXCITED STATES 

In principle, the mathematical formalism of the 
present paper is unsuitable for a rigorous calculation of 
single-particle excited states of the superconductor. 
The difficulty stems from the fact that our many-
electron wave function is an antisymmetrized product 
of two-electron wave functions, rather than an anti­
symmetrized product of one-electron wave functions. 
In practice, we can visualize a single-particle excited 
state in the following fashion. In addition to the 2N 
electrons we have been considering thus far, we intro­
duce a (2iV+l)st electron which occupies with unit 
probability a given one-electron Bloch state of wave 
vector k and spin s. In the limit of slow variation of the 
two-electron wave function ^(R,r) with R, the exclusion 
principle now forces the k term to be removed from 
every one of the wave-vector summations of Sec. I I ; 
i.e., the 2N ground-state electrons cannot occupy the 
single-particle orbital already filled by the additional 
electron. The total energy of the system will be €*, the 
Bloch energy of the occupied orbital, plus the energy 
given by the R integration of Eq. (41) after removing 
the terms indexed by the wave vector k. The single-
particle excitation energy Wk will be this total energy 
minus the energy before the (2iV+l)st electron was 
introduced, i.e., 

Wk= f d*RWk(K), (83) 

where 
ft2 

m ( R ) = e * ( l - 2 / y [ 4 f e ( l - ^ ) ] - H V A ) 2 

Am 

- 2 ( f c ( l - f c ) ) 1 / 2 E F * ( l - f e ) ) ^ . (84) 
kr 

p t should be recalled that the last term on the right-
hand side of (41) has been removed by a redefinition 
of the energy.] In the case of a bulk superconductor, 
the order parameter e0k equals eo(°°), the BCS value, 
over the predominant portion of the material not too 
close to a surface, from which it follows that 

Wk=(ek2+eo2(<x>))lf2 (85) 

just as in the BCS theory. 
We see that the excitation energy Wk is not a function 

of position, despite the fact that the order parameter 
eok may be.26 This is a consequence of our assumption 
that the additional electron occupies a single-particle 

26 In the case of a strongly disordered superconducting alloy, a 
position-dependent excitation energy is possible. The value of the 
excitation energy at any point is a weighted average of Wk(K) 
over a region surrounding the point, this region being of the size 
of the normal-electron mean free path in the alloy. 
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orbital extending throughout the crystal, rather than 
one localized to the surface of the crystal, for example. 
The reasonableness of this assumption can be inferred 
from the discussion of Sec. I, where it was pointed out 
that the electric fields which are modifying the Cooper 
pair wave functions hundreds of Angstroms from a 
surface will have a negligible effect on single-particle 
orbitals more than a few Angstroms from the surface. 
(It will be recalled that this behavior depends on the 
low center-of-mass kinetic energy of the Cooper pairs in 
comparison with that of an individual electron.) For 
all practical purposes, an individual electron sees a 
field-free crystal. 

For the case of two different metals in contact at an 
interface, it seems appropriate to consider distinct 
excited states for the two metals. The Bloch orbital 
occupied in forming an excited state is an orbital which 
spreads only over the metal with which the excited state 
is associated. This is consistent with the loss of phase 
of the wave function in crossing the interface, discussed 
in the previous section. Consider the problem where 
Bloch orbital k in metal A is occupied, thereby forcing 
hk to vanish in A. The continuity of hk and Vuhk at the 
interface thereby forces hk in metal B, over a region near 
the interface, to be smaller than it would be in the 
absence of any excited electron in A. This means that 
the excitation energy in A is, in part, due to a change in 
T^o(R) in B. Such an effect is crucial for understanding 
the possibility of a finite energy gap in a normal metal, 
when that normal metal consists of a sufficiently thin 
film on a bulk superconductor. The absence of any 
attractive electron-electron interaction in the normal 

metal means that changes in Wo(R) in the normal metal 
itself are incapable of explaining a finite energy gap; 
changes in Wo(R) in the superconductor near the 
interface can, however, give rise to the finite gap. 

The presence or absence of a finite energy gap in the 
excitation spectrum can be determined without actually 
calculating what this excitation spectrum is. One makes 
use of a theorem by Migdal.27 Let hk represent the 
probability of occurrence of one-electron state k in 
the many-electron ground state of a metal. (This 
definition of hk is consistent with the present paper in 
the limit of slow variation of hk with R.) The presence 
of a discontinuity in hk (as a function of ek) at the Fermi 
level implies the absence of an energy gap in the single-
particle excitation spectrum; the absence of a dis­
continuity in hk implies the presence of an energy gap. 
An examination of Eq. (52) indicates that the former 
situation corresponds to eoA; vanishing with ek; the latter 
situation corresponds to eô  staying finite as c^-^O. 
Thus, the vanishing energy gap goes with vanishing 
order parameter e0k at the Fermi level; finite energy gap 
goes with finite order parameter at the Fermi level. 
With regard to Eq. (73), the form of hk

lf2 appropriate to 
the normal metal, it is easy to see that the integration 
constant Ck2< 1 corresponds to finite eok(k —> kF), while 
Ck2>l corresponds to vanishing e0fc(&—»&F). AS was 
indicated in Ref. 8, a sufficiently thin film of normal 
metal on bulk superconductor will require the former 
case. 

27 A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 32, 399 (1957) 
[translation: Soviet Phys.—JETP 5, 333 (1957)]; see also J. M. 
Luttinger, Phys. Rev. 119, 1153 (1960). 


